FUR DEN FACHMANN UND DEN BASTLER

Herausgeber und Hauptschriftleiter: Ing. H. Zimmermann, Hamburg 1, Stiftstrasse 15 / H. H. Nölke Verlag, Hamburg 20, Hegestrasse 40

Preis 0,80 RM.

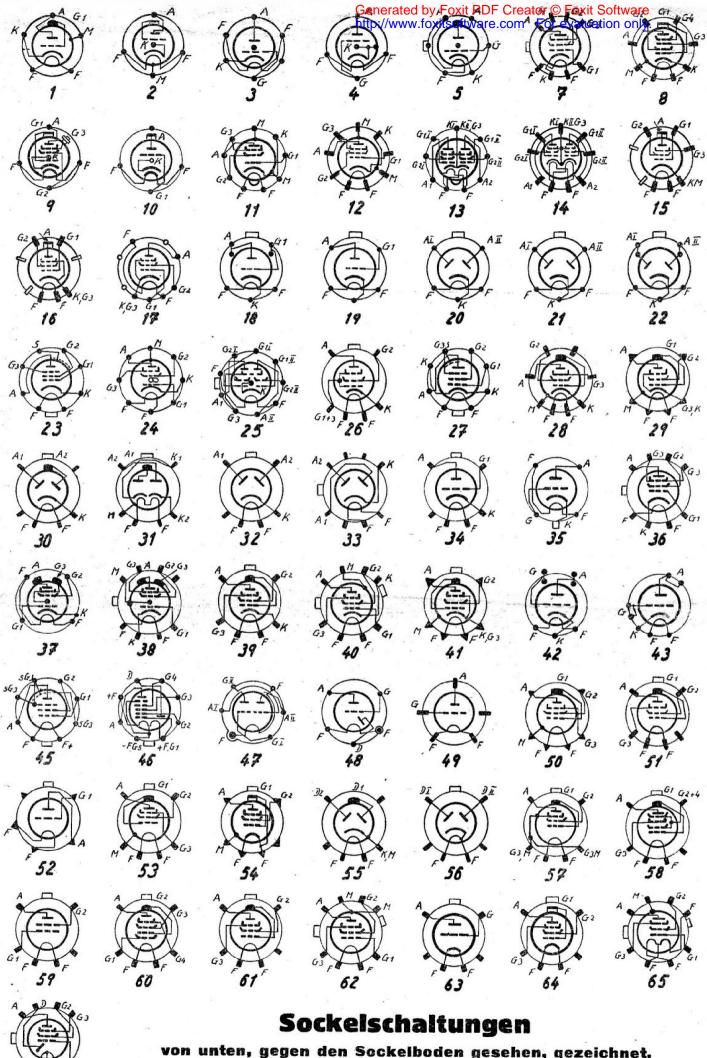
Sonderdruck Nr. 2010

HFT-Betriebsdatentabelle

der in Rundfunkempfangsgeräten verwendbaren kommerziellen Röhren.

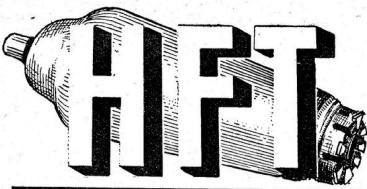
In dieser Zusammenstellung von Röhrendaten der ehemaligen Wehrmachtsröhren sind die Betriebswerte und Sockelschaltungen derjenigen Röhrentypen aufgezeichnet, die nach Kriegsende der Öffentlichkeit zugänglich wurden und mit gutem Erfolg als Ersatz für eine Vielzahl von Normaltypen verwendet werden können.

Die in der Tabelle angegebenen Werte wurden den von der jeweiligen Entwicklungsfirma herausgegebenen Kennblättern entnommen.


Im Gegensatz zu vielen bisher auf den Markt gebrachten unvollständigen Betriebsdatentabellen sind in dieser Tabelle der HFT die einzelnen Wertangaben weitgehendst vollständig aufgeführt.

Die Röhren sind nach der Größe der erforderlichen Heizspannung geordnet.

Alle angegebenen Werte beziehen sich auf die angegebenen Anodenund Gitterspannungen. Die Spannungen selbst sind sämtlich auf die Kathode bezogen.


	T			7		-		N	ormale	Betri	e b s w e	rte G	ener	ated	bv	Fox	xit P	DF	Cre	ento	r (0)	·Flo	xit (Soft	war	e	1 4 7 9 9 3	T
	euna		Bunu		(Bun		‡ _	ter-	÷ 5	To.	. 2	i å hi	tp://v	vww	.fox	itso	ftvya	are.	d pir	ĖįF						V		
D2h santuna	Sockelschaltung	٠,	Heizspannung	Heizstrom	Erklärung)	Anoden- spannung	Bremsgitter	Schirmgitter- spannung	Steuergitter- vorspannung	Anodenstron	Kathoden- widerstand	Schirmgitter- strom U	ttp://v	chgri	an- erstar	st.Au erstar	stär- gsfak	och-	MaxAnoden-	MaxSchirm- gitterverlust- leistung	c-Sch erstre	Kat	MaxSpanng. FadSchions	MaxAnoden spannung ⊃	MaxSchi@	tter- K	Datasatus	-
Röhrentype	ockel	t	Ĭ.	ij	ung teh. E	Ano	Bre				Kat	Schi	Stei		N id	wide	Vers	Spre	Max		Max	Max	May	May		5 ≥	Röhrentype	1
	der S	Heizungsa	Uh	Jh	Verwendung (s. untensteh. F	Ua	Ug3	Ug2	U_{g_1}	Ja *JL	RK	Jg2	S	$*D_{g_2}$	Ri	Ra	v	n~	Na	Ng2 °Ng1	J _{g2}	J _K	U _{F/S}	Ua	Ug2	Rg1		ź
	ž	Heiz	Volt	Amp.	Very (8. un	Volt	Volt	Volt	Volt	mA	kΩ	mA	mA/Volt	%	kΩ	kΩ		Watt	Watt	Watt	mA	mA	Volt	Volt	Volt	МΩ		144
1 100	2	3	4	5	. 6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	1	28
AC 100 AC 101	2	ind.	4	0,65	N W N W	250 250	_		- 5,5 - 5,5	7	0,77	=	2,7		10,5 10,5	=	30		2,0	_	_	10	50	250 250		1,0 1,0	AC 100 AC 101	1 1
AD 100	3	ind.	4 ,	1,6	ET	250	_	_	- 26,5	40	-		4,5	5	1,4	5,0	6,5	1,7	12,0	_	-	60	125	300	1	1,0	AD 100	1
AD 101	4	ind.	4	1,6	ET	250	-	-	- 26,5	40	1		4,5	5	1,4	5,0	6,5	1,7	12,0	-		60	125	300	1 1	1,0	AD 101	1 4
AD 102 AF 100	7	ind.	4	1,6 0,67	ET H	-350 250	0	200	- 51 - 2,1	70 15	T	1,65	5,8 10,5	5 1,7*	0,86 300	4,0	5,0	_	25,0 4,0	0,45	-	20	100	400 250		0,5	AD 102 AF 100	6
AH 100	8	ind.	4	1,1	Ho No	200	- 2,5	100*	- 2,5	5,5 0,43*	0,23	5	1,5		250	_		_	2,0	,,				250	150	,,,	AH 100	7
RV 209	9	ind.	4	1,0	H (E)	250	-	150	- 2,0	20	0,085	3,7	8,2	3,2*	450	-	3700		7,0	1,0		35	100	250	150	0,1	RV 209	8
RV 210	10	ind.	4	1,6	ET	400			- 53	- 70	0,720	-	5,8		860	4,0	5	5,5	25,0	-	-	80	125	400	-	0,4	RV 210	2
EF 50	11	ind.	6,3	0,3	Н	250	-	250	- 2	10	2.	3	6,5		1000	_											EF 50	10
EF 53	12	ind.	6,3	0,3	Н	250		250	- 2	10	1-	3	6,5		1000	-		-						,			EF 58	11
EFF 50 EFF 51	13 14	ind.	6,3 6,3	0,6	H H	300	_	225 225	- 2 - 2	2×10 2×10	2×0.6 2×0.6	$2 \times 1,5$ $2 \times 1,5$	je 10 je 10		250 250	-		-			2		1				EFF 50	12
EL 50	15	ind.	6,3	1,35	GAB	400	0	425	ie - 35	2×45	2×0,63	2×5,5	je 6		je 30	9		_									EFF 51 EL 50	14
EL 51	16	ind.	6,3	1,9	GAB	800 500	0	400 500	je – 37,5 je – 21,5	2×15 2×95	2×0,2	2×1,25 2×12,5	je 4 je 11		je 50	16 4,8											EL 51	18
EL 151						750 450	_	750 450	je – 42 – 24	$2 \times 40 \\ 2 \times 110$	2×0,2	2×6 2×10	je 6 je 2,8			4,5 2,8											EL 151	16
DL 101	17	ind.	6,3	1,9	GAB	800	-	400	je – 14	je×75		je×7	je 3,0			3,0				-								
LD 1	18		12,6	0,090	S ET	300	-	-	-2 ÷ -6	8		7	2:4	6-12					5,0	0,25*	amm	30	100	300	-	0,5	LD 1	17
LD 2 LG 1	19 20	ind.	12,6 12,6	0,180	KW ET UKW D	200 100	_	_	-2 ÷ -5,5	30 2×2	-1-	,	7÷11,5		_ 1		25		12,0	0,6*	-	90	100	800	_	0,2	LD 2 LG 1	18
LG 1 A	21	ind.	12,6	0,075	UKW D	100	_		_	2×2	-	_	_	_	_	_	_	_		_	_					_	LG 1A	20
LG 7	22	ind.	12,6	0,300	D	100	-		-	2×2,5	-	-	-	-				-		_		100		A -	-	_	LG 7	21
LS 4 LV 1	23	ind.	12,6 12,6	0,420 0,210	S NW S EP	250 250	0	250 200	- 18 - 2,5	36 20	0,11	2,5	4-7 9,5		200	7 15		4,2 3,5	9	3,5 1,5		100	100 100	250 800		0,7 0,7	LS 4 LV 1	23
LV 4	25	ind.	12,6	0,300	S GEP	250		200	- 1,75		9,11	1,7	7,0		300	10			je 3,0	je 0,6		15	50	300		0,5	LV 4	24
LV 5	26	ind.	12,6	0,200	HNW	200		20	- 5,2	7	1	1,7	3,3			-	10	-	1,0	0,4		35	100	220	30	1,0	LV 5	25
LV 16 NF 2	27 28	ind.	12,6 12,6	0,175 0,195	H N HAN	250 200	0	250 100	- 2 - 2	14	0,5	2,6	0,5 2,2		500 1800	_	4000	_	1,0	0,3		6	125	200	150	1,5	LV-16 NF 2	27
NF 3	28	ind.	12,6	0,195	HAN	200	0	100	- 2	4,5		1,5	2,3		700		1000	_	1,5	0,3		8		200	125	2,0	NF 3	28
NF 4 RG12 D2	29		12,6	0,195	HAN	200	0	100	- 2	3	0,5	1,0	2,2		1800	-	4000	-	1,5	0,3		6	100	200	150	1,5	NF 4	30
RG12 D2	30 31	ind.	12,6 12,6	0,075 0,160	D D	$2 \times 200 \\ 2 \times 200$	_	_	_	$2\times2,0$ $2\times2,0$	L			_	_		_	_		_	_		100	200	_	_	RG12 D2 RG12 D3	31
RG 12 D 60	32	ind.	12,6	0,200		2×300	_	-		2×60		-	_	_	_	-	_	-		_	_		350	-	-		RG12 D60	32
RG12 D300 RL12 T1	33	ind.	12,6	0,800	ZW	2×500	-	-	-	2×306	T.	7-7	9.9	_	- 45	-	149	-	4.0	-	-	10	35	150	-	-	RG 12 D 300 RL 12 T 1	34
RL12 T1	34	ind.	12,6 12,6	0,065	HAN NET	.75 130		_	- 1,5 - 7	6,5	1,5	_	3,2 1,8	8,5	6,2	8	14,3 12	0,12	1,0 2,0	_	_	15	100	220	_	1,0	RL12 T 2	35
RL12 T 15	35	ind.	12,6	0,55	SN ET	500	-		-	30		_	4,8				14,5		15,0	-	-				-		RL12 T15	36
RL12 P10 RL12 P35	36 37	ind.	12,6 12,6	0,445 0,680	EP S EP	250	0	250 200	- 6	36 60	0,15	4,5 35	9		60				9,0 30	2,0 5,0		50 150	80	250 800	250 200		RL12 P10 RL12 P35	38
RL12 P 50	38		12,6	0,650	SEP	1000	0	300		120		20	2,8 4						40	7,0		100	00	1000	200		RL12 P50	39
RV12 P2000	39		12,6	0,075	HN	210	0	75	- 2,4	2,0	0,9	0,55	1,5		1000	-		-	2,0	0,3		4	100		140	1,0	RV12 P2000	40
RV12 P2000 RV12 P2001	39 39	-0.000000000000000000000000000000000000	12,6 12,6	0,075 0,075	EP Ho	250 210	0	225 75	- 5,0 - 2,3	8,2 3,0	0,5 0,65	2,1 0,55	1,4		1000 700	20		0,6	2,0 1,0	0,7 0,3		11 7	100 100	250 220	225 220	0,5 1,5	RV12 P2000 RV12 P2001	41
RV12 P3000	40	24-126	12,6	0,210	H N(E)	250	0	200	- 2,5	20,0	0,03	2,3	10		200				6,0	1,5		40	100	200000000000000000000000000000000000000	250	1,0	RV12 P3000	42
RV12 P4000	41	10000000	12,6	0,200	HN	200	0	100	- 2,0	3,0	0,5	1,0	2,2		1800	-		_	1,5	0,3		6	100		125	1,0	RV12 P4000	43
LD 5 LD 15	42		12,6 12,6	0,240	UKW Tr	380	=	_	- 30,0 - 30,0	100		_	10 10	5,5 5,5			8	12 12	25,0 25,0	_	2.1	140 140		500 500			LD 5 LD 15	45
LD IV			22,0	0,220	OKW 11	800	4		- 00,0	100			10	-,-					20,0									
LV 9	45	dir.	1,2	0,05	HNW	40		45	- 1,5	1,15	701	0,3	0,9		500	-		-	-								LV 9 RV1 PG1	46
RV1 PG1	46	dir.	1,2	0,05	D + EP	15		15	0	0,7	1	0,2	0,55		100												RVI PGI	
LS 2	47	dir.	1,9	0,200	S ET	150	-	_		2×15	111	-	2,0	6			16		2×2,5	-	-	25	-	250	-		LS 2	48
LS 3	48	dir.	1,9	0,100	D + Tr	80	-	-	- 1,5	1,5	18	-	0,8	4	44		25		1,0	-	-	6	- ,	200 150	-		LS 3 MC 1	50
MC 1 MF 2	49 50	dir. dir.	1,9 1,9	0,190 0,180	N A HAN	100 120	-	80	- 1,5 - 1,5	2,5	1.1	0,55	1,4 0,8		1000	_	15 800	_	1,0 1,5	0,5	-	6	_	200	150	2,5	MF 2	51
MF 6	51	dir.	1,9	0,090	HAN	200		120	-,-	5,0			0,9		1200	-	850	-	1,0								MF 6	52
RL2T2	52 59	dir.	1	0,300	O ET	130	-	190	- 1,5	14,0			2,4		5 75		12 75		2,0	- 10	-	25 32	_	150 200	- 150	1,0 0,7	RL2T2 RL2P3	53
RL 2 P 3 RV 2 P 800	53 54	dir. dir.	1,9 1,9	0,280 0,180	EP HAN	130 120	_	130 80	- 20 - 1,5	10,0 2,5		2,0 0,55	1,0		1000	_	800		2,0 1,5	1,0 0,5		6,5	_	200	150	2,5	RV2 P 800	55
SD1 A	34	ind.	1,9	0,5	KW Tr	75	-	_	- 1,5	10,0	-	_	3,2	7,5	4,5		14,3		1,0	-		10,0	35	150	-	1,0	SD1 A	56
SF 1 A	39	ind.	1,9	0,5	Н	210		75	- 2,0	2,0	0,8	0,55	1,4		1500		2000	-	1,0	0,3		6,0	35	220	130	1,0	SF 1 A	57
RG 2,4 D1	55	ind.	2,4	0,100	KW D	100	_	_	_	2×0,7	- 1	_	_	_	_	_	_	-		-			50	150	-	_	RG 2,4 D1	58
RG 2,4 D 10	56	ind.	2,4	0,150	ZW	500	-	-	_	10	-	-	-	-		-	-	-				10		700	-	- 0.7	RG 2,4 D 10	59 60
RL 2,4 P3 RV 2,4 H300	57 58	dir. dir.	2,4	0,130 0,060	S EP Ho Mo	200 100	0	130 60*	0	10 2,3	10	0,9	1,4 1,0		600	_	3	_	2,0 0,6	0,7 0,4		15 6		200 150	130 150	0,7 2,0	RL 2,4 P3 RV 2,4 H300	
RV 2,4 T 3	59	dir.	2,4	0,060	HAN	20	-	15	- 2,0	1,7		-,0	0,7		6	-	4,5		0,5	-	·	6		100	20	1,5	RV 2,4 T3	62
RV 2,4 P 45	60	dir.	2,4	0,060	HAN	.20	0	15	- 1,5	1,6	30, 1	0,4	0,7		60	-	45	-	1,0	0.0	. 1	6	-	100 200	50	1,5	RV 2,4 P 45 RV 2,4 P 700	
RV 2,4 P 700 RV 2,4 P 701		dir. dir.	2,4	0,060	HAN Ho	150 150	0	75 75	- 1,5 - 1,5	1,7 2,7	17 1	0,35 0,5	1,0		1000 900	_		_	1,0 1,0	0,3		5		200	120 150	2,5 2,5	RV 2,4 P 700 RV 2,4 P 701	100
RV 2,4 P 701 RV2,4 P1400		dir.	2,4	0,35	Н	110	0	110	- 1,0	5,0	3.5	0,7	3,3		200	_	700	_	2,0	0,4		15		200	200	1,0	RV2,4 P1400	66
RL 2,4 T 1	63	dir.	2,4	0,165	ET	130	-		- 3,0	9,2		-	2,4	7			*		1,5	- 0.5	-	15		150	-		RL 2,4 T 1	67
RL 2,4 P 2	64	dir.	2,4	0,165	EP	130		130	- 6,0	11,5	T	2,5	2,2	12					1,5	0,5		18	-	200			RL 2,4 P 2	68
RL 4,2 P 6	65	dir.	4,2	0,300	S EP	200	0	150	- 7	35		6	6						7,5	1,5		50	_	250	250	0,5	RL 4,2 P 6	69
	00	ر در	4.0		e pp	999		900	0 = . 40	50	1	14							15	4		75		400	200	0,5	RL 4,8 P 15	-
RL 4,8 P 15	66	dir.	4,8	0,675	S EP	220	0	200	-8,5 ÷ 19	50	0.1	14	4	A. 59	70		-1-1-1-	Jahan	15	-			D. D.		1			-

In Spalte 6 bedeuten: A = Audion, D = Diode, E = Endröhre, EP = Endpenthode, ET = Endtriode, EW = Einweggleichrichter, GAB = Gegentakt AB - Betrieb, GE = Gegentaktendröhre, H = HF-Verstärkung, KW = Kurzwellen. M = Mischung, N = NF-Verstärkung, O = Oszillator, S = Senderöhre. UKW = Ultrakurzwellen, W = Widerstandsverstärkung, Z = ZF-Verstärkung, ZW = Zweiweggleichrichter, ein p hinter H, N oder Z bedeutet regelbare Verstärkung.

von unten, gegen den Sockelboden gesehen, gezeichnet.

Preis: 0,80 RM.

Hamburger Funk-Technik

FUR DEN FACHMANN UND DEN BASTLER

Verlag: H. H. Nölke GmbH., Hamburg 20. Herausgeber und Hauptschriftleiter: Ing. H. Zimmermann, Hamburg 1, Stiftstr.15

Hamburg, Juni 1947

Von der Milität-Regierung genehmigt. Alle Rechte vorbehalten Nachdruck, auch teilweise, nur mit Genehmigung des Verlages

Sonderdruck Nr. 2011

Die universelle Verwendbarkeit von kommerziellen Röhren

Der heute vorherrschende Mangel an normalen Rundfunkröhren zwingt vielfach zum Ersatz durch kommerzielle Typen.

In Anlehnung an Sonderdruck 1, 2 und 2010 werden im Nachfolgenden die universelle Verwendbarkeit und die Austauschmöglichkeiten der kommerziellen Röhren untereinander und gegenüber den Normaltypen weiter erläutert.

Aus der Serie kommerzieller Röhren, die nach Beendigung des Krieges der Öffentlichkeit zugänglich wurde, ragt die 2-Watt-Penthode RV 12 P 2000 durch universelle Verwendungsmöglichkeit besonders hervor. Es dürfte daher von Interesse sein, die Schaltungsdimensionierungen für optimale Wirkung dieser Röhre bei verschiedener Aufgabenstellung zusammengefaßt kennenzulernen.

Die RV 12 P 2000 läßt sich verwenden als Penthode, Triode bzw. Diode

A) in HF-Verstärkerstufen bis zu Frequenzen von f ≤ 300 MHz.

B) in NF-Vorstufen,

- C) in NF-Endstufen in Eintakt- und Gegentaktschaltungen,
- D) zur HF-Gleichrichtung und Richtspannungserzeugung in Audionund Diodenschaltung, zur Netzgleichrichtung bei kleinem Strombedarf,
- E) in fremd- und selbsterregten Sendeschaltungen,
- F) in Modulationsstufen.

Die Röhre zeichnet sich durch kleine Abmessungen aus, besitzt ein Dreigitter-Verstärkersystem mit einer Steilheit von 1,5 mA/V für Vorstufen und 2,5 mA/V für Endstufen und ist mit einer indirekt geheizten Kathode versehen (Oxydkathode mit bifilar gewickeltem Heizfaden).

Die Heizung kann durch Gleich- und Wechselstrom erfolgen, Heizspannung: 10.8-14.5 Volt, Heizstrom 70-78 mA, wobei zur Erhaltung der Emissionsfähigkeit die positiven Toleranzen zu bevorzugen sind. Heizungsnormalwerte: 12.6 Volt, 75 mA; Widerstand (kalt) 25Ω , (betriebswarm) 170Ω .

Die Röhren- kapazitäten als:	Penthode	Triode
Eingangskapazität (Steuergitter-Kathode)	3,3 ± 0,3 pF ~ 0,7 pF im Betrieb!	~ 1,3 pF
Ausgangskapazität (Anode-Kathode)	$3,15 \pm 0,25 \mathrm{pF}$	~ 1,9 pF
Gitter-Anodenkapazität	0,005 pF	~1,55 pF

Diese Werte gelten mit guter Annäherung bis zu Wellenlängen von 4-5 m, wobei die Gitter-Anodenkapazität im UKW-Gebiet allmählich geringer wird, um im Bereich 10-4 m rasch auf Null zu fallen (Selbstneutralisation der Röhre!)

Es sind grundsätzlich Schaltungen mit automatischer Gittervorspannungserzeugung durch Kathodenwiderstand zu bevorzugen.

A) Für Eingangsstufen

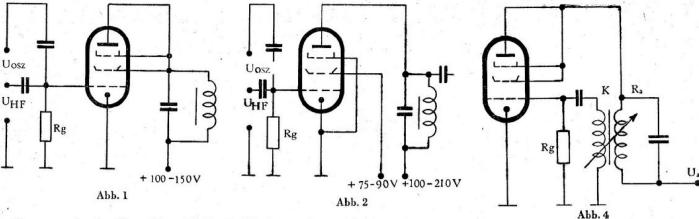
Laut Typenblatt sollen für Eingangsstufen im Interesse einer Lebensdauer von mindestens 3000 Stunden möglichst folgende Werte eingehalten werden:

> Anodenspannung UA max. 210 Volt, Schirmgitterspannung UG2 max. 75 Volt, Bremsgitterspannung UG3 0 Volt, Anodenstrom IA max. 2 mA.

An diese Richtwerte ist man natürlich nicht gebunden, sondern kann ohne wesentliche Beeinträchtigung der Lebensdauer bis UG2 max. 140 Volt und bis zu einem Kathodenstrom von IK max. 4 mA gehen. Höhere Schirmgitterspannung vergrößert die Steilheit, setzt jedoch den Innenwiderstand herab. Für Normalwellenbereich gelten die in Tabelle I zusammengestellten Verstärkungszahlen als Meßergebnisse für einige Arbeitspunkte, die sich aus der Verwendung verschiedener Kathoden- und Außenwiderstände (RK bzw. Ra) bei variierter Schirmgitterspannung und einem Anodenstrom von max. 3 mA ergaben.

Tabelle I

RK	UG2	$R_a = 50 \text{ k}\Omega$	$R_a = 100 \text{ k}\Omega$	$R_a = 200 k\Omega$
Ω	Volt	Verstärkung -fach	Verstärkung -fach	Verstärkung -fach
500	77	100	185	320
600	85	90	175	310
800	100	70	170	280
1000	118	65	150	265
1250	137	60	125	225


Wir sehen, daß die Verstärkungsziffer weitgehend von der Größe des Außenwiderstandes abhängt, der wiederum durch die Art der Schaltmittel der Kopplungsglieder bedingt ist. Für alle üblichen Kopplungsarten wählen wir günstig und zweckmäßig: RK=1000 Ω ; RG= $250~\mathrm{k}\Omega$, wobei sich ein Kathodenstrom von $\sim 2,6~\mathrm{m}A$, ein Anodenstrom von $\sim 2,1~\mathrm{m}A$, eine Steuergittervorspannung von $-2,6~\mathrm{Volt}$ und eine Schirmgitterspannung von $85~\mathrm{Volt}$ ergeben. Die Gefahr der Selbsterregung besteht hauptsächlich für hohe Frequenzen, wenn die Röhrenkapazitäten durch unsachgemäßen Schaltungsaufbau nachteilig vergrößert werden.

Durch Wahl des Arbeitspunktes optimaler Steilheit (RK=600Ω; U_{G2}=90 Volt, Steilheit 2 mA/V) läßt sich die Röhre auch als Breitbandverstärker-Organ verwenden, wobei man bei einem S/C-Verhältnis von 0,28 nicht zu hohe Anforderungen stellen darf.

Da das Bremsgitter von der Kathode getrennt herausgeführt ist, kann die P 2000 als Mischröhre in additiver und multiplikativer Mischschaltung dienen, wobei die Oszillatorspannung zweckmäßig über eine kleine Kapazität dem Steuergitter bzw. Bremsgitter zugeführt wird. Für additive Mischung ist die Röhre als Triode oder Penthode mit den in Tabelle II aufgeführten günstigsten Betriebswerten verwendbar.

Tabelle II Additive Mischschaltung (Abb. 1 und 2)

	Triodens Abb. 1	chaltung und 2	Penthodenschaltung Abb.2				
Anodenspannung	150	100	200-250	100	Volt		
Schirmgitterspannung	_	-	90	75	,,		
Steuergittervorspannung	-9	-6	-7,5	-6	"		
Gitterableitwiderstand	1,5	1,5	2,6	1,5	$M\Omega$		
Anodenstrom	~ 3,7	~ 2,4	~ 0,7	~ 2	mA		
Innenwiderstand	~ 45	~ 30	> 1000	~ 800	kΩ		
Rauschwiderstand	4	4	20	20	$k\Omega$		

Die entsprechenden Werte für multiplikative Mischung zeigt uns Tabelle III. Triodenschaltung ist in diesem Falle nicht möglich, da das Bremsgitter zur Steuerung mittels der Oszillatorspannung gebraucht wird. Wie in Schaltschema 3 angedeutet, sollen Bremsgitter der Mischröhre und Steuergitter der Öszillatorröhre an einen gemeinsamen Gitterableitwiderstand gelegt werden zur Vermeidung von Störungen durch Sekundärelektronen.

Tabelle III Multiplikative Mischschaltung (Abb. 3)

Anodenspannung	100	Volt
Schirmgitterspannung 75	75	77
Steuergittervorspannung2	-2	77
Bremsgitterspannung (Ig·Rg)35	-30	,,
Anodenstrom	0,75	mA
Kathodenwiderstand 800	1000	Ω
Innenwiderstand 400	300	kΩ
Gitterableitwiderstand 50	50	kΩ
Rauschwiderstand	35	$k\Omega$

Im Zusammenhang mit dieser Erörterung ist die Verwendung der P 2000 als Schwingungserzeuger in Oszillatorkreisen von Inter-Man wählt dazu zweckmäßig Triodenschaltung nach folgendem Schema (Abb. 4):

> Für $R_a = 5 k\Omega$ $R_g = 50 \text{ k}\Omega$ $U_a = 100 \text{ Volt}$

ergibt sich eine mittlere Steilheit von 0,6 mA/V, eine Gittervorspannung von -10 Volt, ein Kopplungsfaktor von 0.33 und eine Oszillatoramplitude von 9 V eff.

B) NF-Vorverstärkung / Widerstandskopplung

Allgemein gilt für NF-Verstärkung, daß 70% der Betriebsspannung als Spannungsabfall am Außenwiderstand liegen, die wirksame Schirmgitterspannung kleiner als die wirksame Anodenspannung und eine günstige Gittervorspannung durch richtige Dimensionierung des Kathodenwiderstandes erzeugt werden muß, um beste Leistung zu erzielen. In Tabelle IV/V sind die günstigsten Betriebswerte für drei Speisespannungen zusammengestellt.

Eine wesentliche Verbesserung des Wirkungsgrades ist durch Verwendung einer Drosselkopplung möglich, wie sich aus den Tabellen VI/VII ergibt. Den Meßergebnissen lag eine Drossel von

100 Hy. bei 4 mA Gleichstrom mit einem Gleichstromwiderstand von 14 kΩ zugrunde. Osz-R. Jg·Rg + 100-250 V Abb. 3

Tabelle IV Penthodenschaltung - Widerstandskopplung

Speisespannung	250	250	200	200	100	Volt
Siebwiderstand	20	20	20	20	20	kΩ
Anodenwiderstand	200	200	200	200	200	kΩ
Schirmgitterwiderstand	1	0,8	1	0,8	0,8	MΩ
Kathodenwiderstand	2	3	2,5	3	5	$k\Omega$
Anodenruhestrom	0,8	0,8	0,6	0,65	0,3	mA
Verstärkungsgrad	135	115	100	100	70	-fach
max. Anodenwechselspng	40	45	35	35	20	V. eff.

Tabelle V Triodenschaltung - Widerstandskopplung

Speisespannung	250	250	200	200	100	100	Volt
Siebwiderstand	20	20	20	20	20	20	$k\Omega$
Anodenwiderstand	100	100	100	100	100	100	$k\Omega$
Kathodenwiderstand	1250	3000	1600	4000	4000	8000	Ω
Anodenstrom	1,6	1,3	1,2	1	0,55	0.25	mA.
Verstärkungsgrad	14	13	13	12	12	9	-fach
max. Anodenwechselspng	10	25	8	25		20	V. eff

Tabelle VI Penthodenkopplung - Drosselkopplung

0 .	050	000	000	000	400	400	
Speisespannung	250	250	200	200	100	100	Volt
Siebwiderstand							$k\Omega$
Kathodenwiderstand	600	1600	1000	2500	2500	4000	Ω
Schirmgitterwiderstand	300	250	300	250	300	40	$k\Omega$
Anodenstrom	2,4	2,3	1,75	1,2	0,65	0,8	mA.
Verstärkungsgrad	700	620	640	560	420	340	-fach

Tabelle VII Triodenschaltung - Drosselkopplung

Speisespannung	225	225	200	200	100	100	Volt
Siebwiderstand	20	20				20	
Kathodenwiderstand	500	1250	600	1600	1250	6000	Ω
Anodenstrom			3,5			0,65	
Verstärkungsgrad	22	21	21	1			-fach

C) Für Endstufen

Bei Verwendung als Endröhre ist neben dem Streben nach optimaler Wirkung auf die Aussteuerung bis zu einem Klirrfaktor von max. 10% zu achten. Bei den in Tabelle VIII—XI aufgeführten Werten sind alle für gute Funktion als Endröhre zu beachtenden Vorbedingungen berücksichtigt. Gewisse Schwierigkeiten werden sich für die Anpassung des Lautsprechers ergeben, da ein dem inneren Widerstand der Röhre angepaßter Übertrager wohl kaum vorhanden sein dürfte. Man wird infolgedessen auf optimale Betriebsbedingungen verzichten müssen und mittels Gegenkopplung eine möglichst einwandfreie Tonwiedergabe zu erreichen suchen. Eine Standardschaltung für die Gegenkopplung anzugeben, ist bei der Vielfalt der möglichen Verbraucherwiderstände leider unmöglich. Da starke Gegenkopplung zu wesentlicher Leistungsminderung führt, ist u. U. die Verwendung der P 2000 als Endtriode zu bevorzugen. Gitterableitwiderstand: $0.7 M\Omega$.

Tabelle VIII Endpenthode - Eintaktschaltung

Speisespannung	250	250	100	Volt
Schirmgitterwiderstand	- 20	10	_	kΩ
Kathodenwiderstand	500	600	600	Ω
Anodenstrom	8.2	8,8	3.5	mA.
Außenwiderstand	8,2 35	30	25	kΩ
Leistung bei 10% K		0,75	0,11	Watt

Tabelle IX	Endtriode —	Eintaktschaltung
Speisespannung		925

Speisespannung	225	Volt
Kathodenwiderstand	800	Ω
Anodenstrom	9	mA.
Außenwiderstand	10	· kΩ
Leistung bei 10% K.	0,4	Watt

In Gegentaktschaltungen erfolgt die Einstellung des Arbeitspunktes durch geeignete Wahl des Kathodenwiderstandes, wobei zu überlegen ist, ob man auf maximale Leistung oder geringsten Klirrfaktor dimensionieren will. Beide Möglichkeiten sind in den Tabellen X und XI betriebswertmäßig dargestellt.

 ${\bf Tabelle~X} \qquad \qquad {\bf \it Endpenthode--Gegentaktschaltung}$

Speisespannung	225 225	225 225	Volt Volt	
Kathodenwiderstand	2×600	2×1250	Ω	
Anodenstrom	$2\times8,2$	2×5	mA.	
Außenwiderstand	35	35	$k\Omega$	
Leistung	2,75	2,4	Watt	
Klirrfaktor	8 -	3,5	%*	
*	(Bei Gitte	rstrom-Einsat	zpunkt)	

Tabelle XI Endtriode - Gegentaktschaltung

Speisespannung	200	200	Volt				
Kathodenwiderstand	2×1000	2×1600	Ω				
Anodenstrom	2×7	2×5.2	mA.				
Außenwiderstand		18	$k\Omega$				
Leistung	0,6	0,58	Watt				
Klirrfaktor	4,5	2,5	%*				
		rstrom-Eins:					

Für die Triodenschaltung ergeben sich keine grundsätzlichen Unterschiede. Die günstigsten Betriebswerte sind nach den gleichen Gesichtspunkten wie die der Penthodenschaltung zusammengestellt.

D) Für Demodulatoren

Zur Demodulation in Empfangsschaltungen wird vorzugsweise Gittergleichrichtung oder Diodengleichrichtung angewandt. Die Betriebswerte günstigster Dimensionierung für Gittergleichrichtung mit nachfolgender Widerstandskopplung sind in Tabelle XII/XIII mit nachfolgender Drosselkopplung in Tabelle XIV/XV aufgeführt. Gitterableitwiderstand: 1,5 ΜΩ.

Tabelle XII

Gittergleichrichtung mit RC-Kopplung - Penthodenschaltung

Speisespannung	250	200	100	Volt
Außenwiderstand	200	100	100	kΩ
Schirmgitterwiderstand	1000	600	500	$\mathbf{k}\Omega$
Anodenstrom	1	1,2	0,6	mA.
Verstärk. (bei HF = 0,5 V)	20	15	8	-fach

Tabelle XIII

Gittergleichrichtung mit RC-Kopplung - Triodenschaltung

Speisespannung	250	200	100	Volt
Außenwiderstand	30	30	. 30	kΩ '
Anodenstrom	4.5	4.2	3.5	mA.
Verstärk. (bei HF = 0.5 V)	3	3	2.5	-fach

Tabelle XIV

Gittergleichrichtung mit Drosselkopplung - Penthodenschaltung

Speisespannung	250	200	100	Volt
Schirmgitterwiderstand	300	300	300	kΩ
Anodenstrom	2,8	2.2	1,1	mA.
Verstärk. (bei HF = 0,5 V)	150	135	80	-fach

Tabelle XV

Gittergleichrichtung mit Drosselkopplung - Triodenschaltung

g : 1	000	100	T
Speisespannung	200	100	Volt
Anodenstrom	4,0	1,0	mA.
Verstärk. (bei HF = 0,5 V)	4,4	3,6	-fach

Generated by Foxit PDF Creator © Foxit Software http://www.foxitsoftware.com For evaluation only.

Für Röhrenvoltmeter, zur Regelspannungserzeugung oder für andere, meist meßtechnisch wichtige Spezialschaltungen spielt die Anodengleichrichtung infolge ihres dämpfungsfreien Eingangs eine nicht unwesentliche Rolle. Die günstigsten Betriebswerte ergeben sich aus Tabelle XVI.

Tabelle XVI Penthode als Anodengleichrichter

Speisespannung	250	. 200	100	Volt
Außenwiderstand	200	200	200	kΩ
Schirmgitterwiderstand	1	1	0.8	MΩ
Kathodenwiderstand	3000	4000	8000	Ω
Anodenstrom	0,7	0,55	0.25	mA.
Verstärkung (HF=1 V. eff.)	11	11	8	-fach

Auch in Diodenschaltung (Verbindung sämtlicher Gitter mit der Anode) kann die RV 12 P 2000 zur Regelspannungserzeugung oder Empfangsgleichrichtung mit gutem Erfolg verwandt werden. Die Wahl des Belastungswiderstandes ist dabei unkritisch und kann ohne wesentlichen Einfluß auf die Beziehung uNF = f (uHF) zwischen 50 und 500 k Ω variieren. — Die Verwendung der P 2000 als Netzgleichrichter bedarf keiner Erläuterungen. Günstig ist ein Widerstand von $1-2\,\mathrm{k}\Omega$ zwischen Steuergitter und den mit der Anode verbundenen anderen Gittern.

Ersatz normaler Röhrentypen gegen kommerzielle Röhren

	>		Abweichungen gegen- über den Normalwerten			
Normal- röhrentype	Ersatz- röhrentype	Heizkreis- änderung	OA C Gittervorspannung der Ersatztype	α X X Kathodenwiderst.	W Anodenstrom der Ersatztype	
AB1 AB2	R G 12 D 2 R G 12 D 3	z. 12,6 V W z. 12,6 V W	=		2,0	
AC2	A C 100 A C 101	ohne ohne	=	=	=	
AD1	A D 100 A D 101 A D 102	HV. HV. HV.		=	40,0 40,0 70,0	
AF3	RV 12 P 2001	z. 12,6 V W	-2,3	6,5	3,0	
AF7	RV 12 P 2000 RV 12 P 4000	z. 12,6 V W z. 12,6 V W	-2,0 -2,0	0,9 0,5	2,0 3,0	
AH1	A H 100	HV.	_	0,23	_	
AL1 AL2 AL4	R L 12 P 10 LV 1 R L 12 P 35	z. 12,6 V W z. 12,6 V W z. 12,6 V W	-6,0 -2,5 -	0,15 0,11 —	20,0 60 120	
A L 5	R L 12 P 35 R L 12 P 50	z. 12,6 V W z. 12,6 V W	=	_	60 120	
BL2	LV1	HÄnd.	-2,5	0,11	20	
CB1 }	R G 12 D 2 R G 12 D 3	HÄnd. HÄnd.	=		2,0 2,0	
C C 2.	L D 2	HÄnd.	-3,0	_	30,0	
CF1	RV12 P4000	ohne	_	_	J	
CF2 CF3	RV12 P2001	HÄnd.	-2,3	0,65	3,0	
CF7	RV12 P4000	ohne	-			
CL1 CL2 CL4	LV1	HÄnd.	-2,5	0,11	20,0	
EB4 EB11	RG 12 D 2 RG 12 D 3	HÄnd. z. 12,6 V W	=	Ξ	2,0 2,0	
EF2 EF3 }	RV12 P2001 RV12 P2001	z. 12,6 V W z. 12,6 V W	-2,3 -2,3	0,65 0,65	3,0	

	*			chungen n Norma						chungen en Norma		
	L. Company of the Com	Heizkreis- änderung		Gittervorspannung der Ersatztype	Kathodenwiderst. der Ersatztype	Anodenstrom der Ersatztype	Normal- röhrentype	Ersatz- röhrentype	Heizkreis- änderung	Gittervorspannung der Ersatztype	Kathodenwiderst. der Ersatztype	Anodenstrom
			Ug ₁ Volt	R_k $k\Omega$	I _a mA	**	e		U _{g1} Volt	R _k kΩ	l _a mA	
EF5 EF6						VF3 VF7	RV12 P2001 RV12 P2000	HÄnd. HÄnd.	-2,3 -2,4	0,65 0,9	3,0	
EF8 EF9 EF11 EF13	RV 12 P 2001	HÄnd.	-2,3	0,65	3,0	VL1 . VL4	RV 12 P 2000 zweimal RV 12 P 2000	HÄnd. HÄnd.	-2,4 -2,4	0,5 0,2	8,5 16	
E F 12	RV 12 P 2000 RV 12 P 4000	HÄnd. HÄnd.	-2,0 -2,3	0,5 0,65	3,0 3,0	R E 034 R E 084	RV 2,4 P 700 RV 2 P 800	HÄnd. HÄnd.	-1,5 -1,5	=	1,7 2,5	
E L 2 E L 3 E L 5 E L 6	LV1	z. 12,6 V W	-2,5	0,11	20	R E 114 R E 134 RES 164 RES 164 D RES 174 D	RV 2,4 P 700 RV 2 P 800	HÄnd. HÄnd.	-1,5 -1,5	_	1, 2,	
EL 11 -	RL 12 P 10 RL 12 P 35	z. 12,6 V W z. 12,6 V W	-6	0,15	36 —	R E 304 RES 364						
E L 12	RL 12 P 50 L V 1	z. 12,6 V W z. 12,6 V W	-2,5	0,11	20	R E 604	RL 2 T 2	HÄnd.	-1,5	_	14	
K C 1 K C 3	M C 1 RV 2 P 800	ohne ohne	-1,5 -1,5		4,0 2,5	R E 904	A C 100 A C 101	ohne ohne	-5,5 -5,5	0,77 0,77	7	
KC4 J	RV 2 P 800	ohne	-1,5		2,5	RENS 1284	RV 12 P 2000 RV 12 P 4000	z. 12,6 V W z. 12,6 V W	-2,4 $-2,0$	0,9 0,5	2,0	
KL1 \	DIADA		1			RENS 1374 d	RL 12 P 10	z. 12,6 V W	-6,0	0,15	36,0	
K L 2	R L 2 P 3 RV 2 P 800	ohne ohne	-20 -1,5		2,5	RENS 1818 RENS 1820 RENS 1821 RENS 1884	RV12 P 2000 RV12 P 4000	HÄnd. HÄnd.	-2,4 -2,0	0,9 0,5	2,0	
U F 9 U F 11	RV12 P 2001	HÄnd.	-2,3	0,65	3,0	RENS 1819	RV 12 P 2001	HAnd.	-2,3	0,65	3,0	
V C1	RL 12 T 2	HÄnd.	7	1,1	6,5	RENS 1623 d	LV1	H. And.	-2,5	0,11	20	

n Spalte 3 bedeuten: H.-Änd. = Heizkreis ändern, ohne = keine Heizkreisänderung erforderlich, z. 12,6 V W = zusätzlich 12,6 V-Wicklung auf den Trafo aufbringen, H.-V. = Heizwicklung verstärken,

Zur Gründung des »Verein für Funktechnik«

Die Funktechnik ist von allen Ausdrucksformen unserer modernen Technik sicher die volkstümlichste. Sie findet ihre Liebhaber und Vertreter in allen Kreisen der Bevölkerung, in allen Bildungsschichten und Alterstufen, im einfachsten Wunsch nach anspruchslosem Basteln, wie im Verlangen nach vertiefter Einsicht in naturgesetzliche Grundlagen. Die beherrschende Rolle der Verstärkerröhre, als Hilfsmittel der Technik und der Forschung, hat zudem eine erhebliche Ausweitung des Interessenbereichs und Betätigungsdranges des zunächst nur am Funk Interessierten bewirkt. Von der Seite des Rundfunks sind akustische und elektroakustische Fragen hinzugetreten.

Die Mannigfaltigkeit der sich ergebenden, durchaus nicht mehr einfachen Fragen einerseits und die anzuwendende Technik des Messens und Prüfens andererseits erfordern ein hohes Maß an Einfühlungsvermögen in technisch-physikalische Sachverhalte. Die durch mancherlei Zeitereignisse entstandenen allgemeinen Schwierigkeiten und der Mangel an Schrifttum, technischen Hilfsmitteln und einer entsprechenden Fachvereinigung drängen seit langem nach einer Gemeinschaft. Mit Hilfe einer solchen Gemeinschaft ist es erst möglich, die beschränkten Mittel des einzelnen so zu ergänzen und Voraussetzungen zu Leistungen zu schaffen, die denen der industriellen Praxis nicht nachstehen.

Auf Grund einer durch Vortrag, Schrifttum und Übung erreichten Leistungsfähigkeit ist es dem Funkfreund schließlich möglich, an der in ständigem Fluß befindlichen technischen und physikalischen Entwicklung aktiven Anteil zu nehmen. In den wechselseitigen Anregungen der Funkfreunde untereinander und der Herbeiführung ihrer Verbindung zu Fachforschung und -lehre liegt ein weiterer hoher Gewinn solcher Gemeinschaft.

Möge es dem Verein für Funktechnik gelingen, die gesteckten hohen Ziele zu erreichen. Der erste Schritt dazu ist getan.

Nähere Einzelheiten sowie ein Auszug aus den Satzungen des Vereins für Funktechnik sind in der Bauanleitung Nr. 9 der "HFT Hamburger Funk-Technik" bekanntgegeben.

Ing. H. Zimmermann