Red-sensitive, 10-stage, 38 mm (1.5") round tube

Applications: Industrial applications such as laser reading and flying spot scanners.

Description:
- **Window:** (frosted) borosilicate glass
- **Material:** tri-alkali
- **Photocathode:**
- **Refr. index at 420 nm:** 1.48
- **Multiplier:**
- **Structure:** linear focused
- **Nb of stages:** 10
- **Mass:** 55 g

Photocathode characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spectral range</td>
<td>270-850 nm</td>
</tr>
<tr>
<td>Maximum sensitivity at</td>
<td>450 nm</td>
</tr>
<tr>
<td>Sensitivity</td>
<td></td>
</tr>
<tr>
<td>Luminous</td>
<td>min.: 100</td>
</tr>
<tr>
<td>Radiant, at 700 nm</td>
<td>min.: 10</td>
</tr>
<tr>
<td></td>
<td>typ.: 20</td>
</tr>
</tbody>
</table>

Characteristics with voltage divider A

- Gain slope (vs supp. volt., log/log): 7.5
- For an anode blue sensitivity of:
 - Supply voltage:
 - max.: 1600 V
 - typ.: 1250 V
 - min.: 1000 V
- Gain: 3x10^5
- Anode dark current
 - max.: 50 nA
 - typ.: 2 nA
- Mean anode sensitivity deviation:
 - long term (16 h): 1 %
 - after change of count rate: 1 %
 - vs temperature between 0 and +40 °C at 420 nm: ± 0.1 %/K
- Gain halved for a magnetic field of:
 - perpendicular to axis "n" of: 0.35 mT
 - parallel to axis "n" of: 0.15 mT
 - parallel to tube axis of: 0.6 mT

Characteristics with voltage divider B

- For a supply voltage of:
 - max.: 1700 V
 - typ.: 1350 V
 - min.: 5x10^5 V
 - 5.3x10^5 V
- Linearity (2%) of anode current up to:
 - 200 mA
 - 65 mA
- Anode pulse:
 - Rise time: 2.5 ns
 - Duration at half height: 6 ns
 - Transit Time: 26 ns
 - Capacitance: 5 pF
Recommended voltage divider

Type A for maximum gain

<table>
<thead>
<tr>
<th>K</th>
<th>D1</th>
<th>D2</th>
<th>D3</th>
<th>D4</th>
<th>D5</th>
<th>D6</th>
<th>D7</th>
<th>D8</th>
<th>D9</th>
<th>D10</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>(total: 12)</td>
</tr>
</tbody>
</table>

Type B for best timing / linearity compromise

<table>
<thead>
<tr>
<th>K</th>
<th>D1</th>
<th>D2</th>
<th>D3</th>
<th>D4</th>
<th>D5</th>
<th>D6</th>
<th>D7</th>
<th>D8</th>
<th>D9</th>
<th>D10</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1.25</td>
<td>1.25</td>
<td>1.5</td>
<td>2.25</td>
<td>2.25</td>
<td>2.5</td>
<td>2.25</td>
<td>(total: 18.25)</td>
</tr>
</tbody>
</table>

K: photocathode | Dn: dynode | A: anode

Limiting values

- **Anode luminous sensitivity**: max.: 1000 A/Im
- **Supply voltage**: max.: 1800 V
- **Continuous anode current**: max.: 0.2 mA
- **Voltage between**:
 - D1 and photocathode: min.: 100 max.: 500 V
 - Consecutive dynodes: min.: 30 max.: 300 V
 - Anode and D10: min.: 30 max.: 300 V
- **Ambient temperature**:
 - Short operation (< 30 mn): min.: -30 max.: +80 °C
 - Continuous operation & storage: min.: -30 max.: +50 °C

Notes: ☑ Characteristic measured and mentioned on the test ticket of each tube.

1. Luminous and radiant sensitivities are measured with a tungsten filament lamp with a colour temperature of 2856 ± 5 K. For radiant sensitivity, the light is transmitted through an interference filter centered on 700 nm and expressed in mW/W.
2. Dark current is measured at ambient temperature, after the tube has been in darkness for approximately 1 min. Lower value can be obtained after a longer stabilisation period in darkness (approx. 30 min.).
3. Pulse amplitude resolution for 137Cs is measured with NaI(Tl) cylindrical scintillator with a diameter of 12 mm and a height of 25 mm. The count rate used is 10^4 c/s.
4. The mean pulse amplitude deviation is measured by coupling a NaI(Tl) scintillator to the window of the tube. Long term (16h) deviation is measured by placing a 137Cs source at a distance from the scintillator such that the count rate is 10^4 c/s, corresponding to an anode current of ~ 300 nA. The mean pulse amplitude deviation after change of count rate is measured with a 137Cs source at a distance from the scintillator such that the count rate can be changed from 10^3 to 10^2 c/s, corresponding to an anode current of ~ 1 µA and 0.1 µA respectively. Both tests are carried out according to ANSI-N42.9-1972 of IEEE recommendations.
5. To obtain a peak pulse current greater than that obtainable with divider A, it is necessary to increase the inter-dynode voltage progressively. Divider circuit C is an example of a progressive divider, giving a compromise between gain, speed and linearity. other dividers can be conceived to achieve other compromises. It is generally recommended that the voltage ratio between two successive stages is less than 2.
6. Measured with a pulse light source, with a pulse duration (FWHM) of approximately 1 ns., the cathode being completely illuminated. The rise time is determined between 10 % and 90 % of the anode pulse amplitude. The signal transit time is measured between the instant at which the illuminating pulse of the cathode becomes maximum, and the instant at which the anode pulse reaches its maximum. Rise time, pulse duration and transit time vary with respect to high tension supply voltage Vht as $(Vht)^{-1/2}$.
Accessories

Socket: FE1112
Mu-metal shield: MS170